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PHASE VELOCITIES AND DISCONTINUOUS STRUCTURE OF SHOCK WAVES 

O. I. Dementii and S. V. Dementii UDC 533.951 

w The problem of the structure of a shock wave consists in the search for the solu- 
tion Uk(X , t) = Uk(X -- Ut) (k = i, ..., n) of a system of quasillnear equations of the form 

O A i (u)+ ~ [B~ (u) -  ~ -~xauk1.1 -at ~c~ (u) I = 0, i = I, .... , m, (i. i) 
k=I 

0 0 
"~ Ai(u)+'~Bi(u)=O, i=m-~-1 ..... n, 

with the boundary conditions duk/dX]x=~ = 0, where u = {Uk }n is the set of parameters char- 
acterizing the state of the medium and {~k} m are the dissipative coefficients. 

The extreme complexity of this problem, which arises largely due to the possibility of 
existence of segments of irregular behavior of the solution, does not permit the solution in 
its general formulation. At the same time, the determination and elimination of the irregu- 
lar segments can appreciably simplify the problem. Such irregularities appear in the form 
of nonphysical segments in the solution, which generally correspond to regions of multivalued: 
hess of some functions Uk(X ). The nonphysical segment in a formal mathematical solution must 
be replaced by a discontinuity, as usually done in hydrodynamics or magnetohydrodynamics in 
the study of shock waves [1-5]. It has been noted in a number of studies that an internal 
discontinuity appears in the case when the flow velocity in the wave goes through a certain 
critical value [2, 6-9]. Furthermore, it is shown that the critical velocity is the phase 
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velocity of the highest ideal system (Whitham-Lyubarskii criterion) [8-10]. Subsequently, 
it was shown that the transition through the critical velocity does not always result in the 
development of the discontinuity [5, Ii]. Below we discuss the role of the phase velocities 
of ideal systems in the formation of a discontinuity within a shock-wave profile. 

w We call the system of equations (i.I) a dissipative system of order m. Dissipative 
systems of lower order can be obtained from system (i.i) by putting one or a number of dissi- 
pative coefficients equal to zero (see, for example, (2.3) [12J). 

The discontinuity in the solution of a dissipative system of order r (if such a discon- 
tinuity appears) will be called a discontinuity of order r. With each dissipative system of 
order r there can be an associated ideal system if all the nonzero dissipative coefficients 
are made to tend to infinity [10,12]: 

~Cik (u) O u # O x  = O, i = 1 . . . . .  r ,  
a=l " (2 .1)  

O Ai(u)--}-~B~(u)=O, i = r - } - l ,  ,n, 

which admits of a solution in the form of plane waves with nondamping amplitude. The char- 
acteristic equation of system (2.1) 

I 0 U ! A i ( u ) l ~  = 0 ,  O ~ r ~ m ,  (2 .2)  D r(u,U)--- ~ B ~ ( u ) - -  Ou k r+i 

de te rmines  n -- r r e a l p h a s e  v e l o c i t i e s U  =V3r, j =1,  . . . ,  n -- r [8, 10, 12] .  The unimpor tan t  
f a c t o r  ]Cik[ r ,  which cannot  v a n i s h  by v i r t u e  of  the  d i s s i p a t i v e  n a t u r e  of  sys tem (1 .1)  [10] ,  
is omitted in (2.2). The phase velocities of an ideal system of order r will be called phase 
velocities of order r for brevity. 

In a reference system moving with the shock wave (U = O) the dissipative system of equa.- 
tions takes a simpler form: 

d a t ~ u i = b i ( u ) ,  i=:I ,  . . . .  m, 

bi(u)=O, i = t d - -  t . . . . .  n .  
(2 .3)  

+ 
The boundary conditions are now written in the following way: Uk(--~) = u~, Uk(+~) = u k. The 
values< (k = i, ..., n) are the solutions of the lowest ideal system bi(u) = 0 (i = i, ..., 
n) corresponding to the absence of dissipation in the medium (m = 0). 

The determinants of all ideal systems associated with dissipative system (2.3) are ob- 
tained from the determinant of the lowest ideal system Do(U) = Ibik(U) l~ , bik(U) ~ (~/3Uk)" 
bi(u) by deleting the rows and columns with the numbers of the dissipative coefficients that 
tend to infinity. It is obvious that thedeterminant D r of the ideal system changes sign if 
the flow velocity within the shock layer crosses the corresponding phase velocity. 

According to the Whitham,Lyubarskii criterion the development of the discontinuity in 
the shock-wave profile is related to the transition of the flow velocity v x within the shock 
layer through the highest-order phase velocity, 

or to the change of sign of the determinant of the highest-order ideal system [8, 10], 

Dm(uOOm(u-) < 0. (2 .4)  

As already mentioned, in spite of the need for this criterion [5, 8J, it is found to be 
inadequate in the general case. This inadequacy arises due to the possibility of occurrence 
of singular points (different from the boundary singular points u = and u+),through which the 
solution may pass in such a way that the discontinuity does not arise [5, ii]. However, under 
certain restrictions the problem of development of a discontinuity in the solution of a dis- 
sipative system of an arbitrary order can reduce to the determination of a sequence of dis- 
continuities similar to the first-order discontinuity, i.e., to the solution of a sequence 
of problems without internal singular points. It turns out that the phase velocities of all 
orders play a significant role in the formation of the discontinuity. 
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w In order to simplify the subsequent discussion, we shall restrict ourselves to the 

following relationships among the dissipative coefficients: 

=I >> =2 >> " " > >  =m. (3. I )  
r 

This choice of the relationships permits one to consider in each order r (0~.r ~<m), C m for 
only one ideal system corresponding to the first r dissipative coefficients tending to in- 
finity and the remaining ~-- r) coefficients tending to zero instead of a set of C~. Further. 
more, in order to avoid investigating the evolution of the emerging discontinuities, we shall 
assume the wave intensity to be such that the determinants Dr(~)(O~r ~m) do not change 
sign more than once on the interval (u-, u@). 

Along with dissipative system (2.3),. dissipative systems of order (m-- i) to the first, 
which can be obtained from (2.3) depending on the degree of idealization of the problem by 
successive disregarding of the dissipative processes governed by the coefficients c~ << 
~m-~ << "'" << ~a, are also meaningful. 

We shall assume that the solution of the dissipative system of order m has a discontinu- 
ity, i.e., condition (.2.4) is satisfied. Then in view of the fact that the elimination of 
any dissipative process may not remove the discontinuity, the solution of the dissipative 
system of order m -- i (~m = 0) also must have a discontinuity, i.e., according to the Whitham, 
Lyubarskii criterion, the condition Dm-1(u+)Dm-1 r < 0 must be satisfied. Next, passing on 
to the system of order m -- 2 (~m = =m-1 = 0), we obtain the condition Dm-2~u~]Dm-2(u -) < 0. 
Continuing this argument, we arrive at the conclusion that a necessary condition for the 
existence of a discontinuity of order m within a shock-wave profile is the transition through 
the phase velocities of ideal systems of all orders from order zero to m inclusive, i.e., at 
least the relationships Dr(U+)Dr(Ur) <~0, r = O, i, ..., m, must be satisfied. 

w In the absence of dissipation, the shock wave can not otherwise be described as a 
discontinuity that connects the constant values of the gas parameters u k- ahead of the wave 
and Uk + behind it [1, 13, 14]. Besides, in the stationary case the unperturbed flow may form 
a boundary only with the shock discontinuity [15], i.e., the relation 

Oo(u+)Oo(u- ) < 0 64. i) 

must be satisfied for u- # u +. 

The introduction of dissipation brings in a certain length scale to the problem. Actu- 
ally, the solution p(x) of the dissipative system of first order 

~idpl/dl = bl(p), hi(p)= 0, i : 2, ..., B, C4.2) 

describes a continuous variation of the parameters of the medium PkCX) from the values u k- 
to Uk+ , and this variation occurs over a length of the order of ~ [i, 13, 16]. The solution 
of system (4.2) remains continuous only as long as the condition D=(u+)D=(ur)> 0 is satis- 
fied. If the Whitham-Lyubarskii criterion 

DI(u4)DI(U -) < 0, 64.31 

holds in the interval (u-, u+), then a first-order discontinuity develops within the shock- 
wave profile [5, 8, i0], i.e., the functions Pk(X) (k = 2, ..., n) change their value with a 
jump from pk(1) = pk(xx -- 0) to pk(2) = Pk(Xx + 0). Here x~ indicates the position of the 
internal discontinuity. As regards the function px(x), it follows from the first equation 
of system (4.2) that the derivative dpz/dx is always finite and p1(x) itself is continuous: 

pl( l)  = p~(2) - -  pl(Z1). ( 6 . 4 )  

It must be noted that if condition (4.1) is not satisfied, then system ~4.2) has only 
the trivial continuous solution Pk(X) = const ~k = l, ..., n), i.e., the first-order discon- 
tinuity may be contained only in the zero-order discontinuity smeared by dissipation. 

As a rule, the solution of first-order dissipative systems does not present essential 
difficulties due to the absence of any internal singular points. The direct solution of such 
systems in ordinary hydrodynamics and magr~etob_ydrodynamiCs shows 11, 2, 8, 13, 14J that t~ 
first-order discontinuity arises as a result of overturning of the shock-wave profile, The 
fact that the overturning occurs during the transition throug~ the corresponding phase yeloc- 
ity within the shock-wave profile (the phase velocity of isothermal [I] and isomagnetic oscil- 
lations [8], etc.) showsthat the mechanism of formation of the internal discontinuity is 
similar to the mechanism of formation of the shock wave (zero-order discontinuity). 
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w We consider a second-order dissipative system: 

=ldql /dx  = bl(q), ~2dq~/dx = b2(q),bi(q) = O, ~ = 3 . . . . .  n. ( 5 . 1 )  

F o r  aa  = O, s y s t e m  ( 5 . 1 )  g o e s  o v e r  i n t o  ( 4 . 2 ) ,  and  t h e  f u n c t i o n s  q k ( x )  m u s t  go o v e r  i n t o  
P k ( X ) .  I t  i s  a l s o  c l e a r  t h a t  a s  a2 + 0 t h e  l e f t - h a n d  s i d e  o f  t h e  s e c o n d  e q u a t i o n  o f  ( 5 . 1 )  
c a n  be  d i s r e g a r d e d  o n l y  i n  t h e  c a s e  when t h e  d e r i v a t i v e  d q 2 / d x  § d p a / d x  d o e s  n o t  t a k e  on  
large values. In other words, the term a2dq~/dx is significant and the solution q(x~ is 
qualitatively different from p(x) only in a small region (of the order of ~2), within which 
p2(x) undergoes discontinuity. 0utsid~ this region, and also in the case when the solution 
p(x) of the first-order system does not contain a discontinuity, the solution q(x) of the 
second-order system has the same nature as p(x) [ii], and, in principle, it can be found by 
the perturbation method [16j. 

Since the problem is not to find the exact solution of the dissipative systems but to 
investigate its singularities, on the basis of the above discussion it may be asserted that 
the "turning on" of the dissipative process with am << a~ leads, in practice, only to a 
smearing of the first-order internal discontinuity in the region of continuous variation of 
the parameters with width u2, i.e., it can be approximately assumed that outside this region 
the solution q(x) .= {qk(x)}? of dissipative system (5.1) coincides with the solution p(x) = 
{Pk(X)}~ of system (4.2). By virtue of (4.4), the function p1(x) may be assumed to coincide 
with q~(x) in the entire range of variation of x. 

Since the second-order transition region x~-- ~2 < x < xl + u2 is small compared to the 
width of the first-order transition region x~-- ul < x < x~ + a~, inside this region system 
(5.1) can be replaced by the first-order system 

q~(x) = p~(x), azd72'dx = b=(q), b~(q) = 0, i = 3 . . . .  , n, ( 5 . 2 )  

and the boundary conditions 

qk(x 1 - -  a2) = p~(1), qk(x I + a2) = ph(2), k = 2 . . . . .  n. ( 5 . 3 )  

It is obvious that the system (5.2) thus obtained has the same characteristics as system 
(4.2): i) the solution qk(x) (k = 2, ..., n) contains a discontinuity if the Whitham--Lyubar- 
skii criterion for system (4.2) 

D~(p(l))D~(p(2)) < 0; (5.4) 

is satisfied; 2) it has only the trivial solution qk(x) = const if p(l) ~ p(2), i.e., if con- 
dition (4.3) is not satisfied. In other words, the second-order discontinuity can appear only 
within the first-order discontinuity smeared by dissipation. 

Using similar arguments, the solution of a dissipative system of any order r can be con- 
structed if the solution of the dissipative system of order r -- i is knowni it can be shown 
that the discontinuity of order r can appear only within the discontinuity of order r -- 1 
smeared by dissipation; here the condition 

O~(n(i))Or(u(2)) < 0 ( 5 . 5 )  

must be satisfied, where u(1) and u(2) are the values of the parameters of the medium on the 
two sides of the discontinuity of order r -- 1 and u(1) ~ u~2). 

It is clear ~hat condition (5.5) must be satisfied in all orders from zero up to and in' 
cluding m for the existence of a discontinuity of order m in the solution of system (1.11. 

This result explains the absence of an isothermal, isomagnetic jump within the profile 
of a slow MHD shock wave of small intensity propagating in a nonviscous gas (m = 2) even under 
the condition when within its profile the flow velocity crosses the isothermal sound velocity 
(which, in this case, happens to be the phase velocity V= of the highest ideal system) [llJ. 
Actually, in this case, the zero-order phase velocity Vo is the slow magnetoacoustic velocity 
and the first-order phase velocity Va is the sound velocity (adiabatic). In view of the fact 
that the difference Vz -- V2 always remains finite, with the Whitham-Lyubarskii criterion being 
satisfied in a slow MHD shock wave of small intensity (i.e., JVo -- V2J has small values), the 
condition of existence of the first-order discontinuity is not satisfied and as a result the 
second-order discontinuity does not occur [Ii]. 

However, the situation changes significantly with the increase in the intensity of the 
slow shock wave. Thus, when the thermal conductivity of the medium is small compared to the 
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magnetic viscosity, the slow MHD shock wave starts as an ordinary hydrodynamic wave 6iso- 
magnetic discontinuity, first-order discontinuity) if the flow velocity ahead of it exceeds 
the sound velocity [9]. An isothermal discontinuity which is also an isomagnetic isothermal 
discontinuity in the profile of the slow MHD shock wave may appear within an ordinary shock 
wave [5]. 

w The first-order discontinuity, if it exists, lies at the beginning or the end of 
the shock-wave profile. This has been established from the solution of the problem of the 
structure of a shock wave in ordinary gasdynamics [i] and in magnetogasdynamics [SJ and is 
easily extended to the case of an arbitrary dissipative system of the first order. The 
shock-wave profile begins (ends) with the discontinuity if VI > Vo (Vl < Vo). 

It has been shown above that the soiution of dissipative system (2.3) can be reduced to 
the solution of a number of first-order dissipative systems. Making use of this result, it 
may be asserted that the discontinuity of order r(0~ r~-~m) lies at the beginning of the 
discontinuity of order r' = r -- i smeared by dissipation er if V r > V r' and at its end if 
V r < Vr'. The jumps of the functions at this discontinuity are determined by the boundary 
conditions of type (5.3): 

for V r > Vr,; 

u ( t r )  = u ( l r ' ) ,  

u h ( 2 r )  = u k ( 2 r ' ) ,  k = 1,  . . . ,  r ,  

b i ( u ( 2 r ) )  = O, i = r + 1 . . . . .  n 

(6.1) 

to which conditions 
coefficients. 

uk(ir) = u k ( 2 r ) i  k = 1, . . . ,  r ,  ( 6 . 2 )  

b i ( u ( l r ) )  = O, i = r + t . . . .  , n ,  

u ( 2 r )  = u ( 2 r  ~) 

for V r < Vr'; here (ir) and (ir') denote the states ahead of discontinuities of order r and 
r' = r -- i; (2r) and (2r') denote the states behind them. 

Thus, not only the presence of the discontinuity can be ascertained, but also its magni- 
tude and position within the shock-wave profile can be found without solving dissipative sys- 
tem (I. i). 

w We note two particular cases in which the fact of existence of the discontinuity, 
its magnitude, and its position are determined uniquely independently of the relationships 
among the dissipative coefficients. Actually, if the relationships Vo < VI < ... < V r < 
�9 .. < Vmhold for any orderof inclusionof thedissipative coefficients,then the transition 

through the phase velocity of the highest ideal system V m automatically denotes satisfying 
conditions (5.4) at all orders from zero up to and including m -- i, and independently of the 
order of inclusion of the dissipative coefficients, condition (6.1) also reduces to 

u ( t m )  = u ~  (7.1) 

u ~ ( 2 m ) ~ u T ,  k = t ,  . . . .  m ,  

b i ( u ( 2 m ) )  = O, i = m + 1 ,  . . . ,  n ,  

i.e., the shock wave starts as a discontinuity of order m and the jumps of the functions can 
be obtained from conditions (7.1). 

On the other hand, if the inverse relationships Vo > VI > ... > Vr > ... > Vm hold among 
the phase velocities of all ideal systems for any order of inclusion of the dissipative coef- 
ficients, then the transition through the phase velocity of the highest ideal system V m also 
automatically results in conditions (5.4) being satisfied at all orders. In this case the 
shock wave ends with a discontinuity of order m and the jumps of the functions can be obtained 
from the conditions 

u ( 2 m )  - -  u+ ,  

u h ( t m ) = u ~ ,  k = i ,  . . . .  m ,  

b i ( u ( t m ) )  = O, i = m + 1, . . . ,  n ,  

(6.2) reduce independently of the order of inclusion of the dissipative 
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As an example, one could consider a fast MHD shock wave propagating in a nonviscous 
medium with finite thermal and electrical conductivities (m = 2), in which ~in contrast to 
the slow shock wave) the transition of the flow velocity through the isothermal sound veloc- 
ity leads to the appearance of an isothermal, isomagnetic discontinuity [4]. 

w It was noted above that [in approximation O.i)] the procedure of search for a 
discontinuity in the solution of a dissipative system could be reduced to the search for a 
system of first-order discontinuities accompanying successive "freezing" of the degree of 
freedom, which would permit one to discard one of the differential equations of the system 
at each step, thus making the procedure converge. 

It is quite clear that such "freezing" of the value of, for example, the parameter u r 
is equivalent to making the dissipative coefficient e r go to infinity, i.e., at each step of 
the procedure one passes on to the ideal system corresponding to the nonzero (but finite ac- 
cording to the assumption) dissipative coefficient tending to infinity. Here the discon- 
tinuity is defined as a shock wave in the ideal medium. 

The paradox of the situation is related to the fact that the equilibrium structure of a 
steady-state shock wave has been considered. However, this paradox can be eliminated if the 
dynamics of setting up of the steady-state profile is taken into consideration. This can be 
done most vividly in the case of a shock wave developing in a thermally conducting gas. 

In a reference system attached to the shock wave, theexistence of a stationary structure 
of the front means that in each cross section of the front there exists an equilibrium between 
the heat flux carried by the gas flowing across this section and the heat flux in the opposite 
direction caused by the temperature gradient and the finite conductivity of the gas. 

It is well known that the existence of nonhydrodynamic heat transfer in the leading 
layers of the front leads to the result that in the process of formation of the stationary 
shock wave the temperature in the wave changes more rapidly than the other parameters. Thus, 
when the intensity of the shock wave under formation increases, it is found that in some 
cross section of the as yet nonequilibrium front the temperature reaches the value T+estab - 
lished behind the shock front. It is obvious that a further increase of the temperature in 
this cross section, as also in all layers behind it, is impossible [13]. 

Actually, the existence of a region within the wave profile where the temperature gradi- 
ent is directed into the region behind the wave would mean the opposite. This would indicate 
that the heat flux carried by the gas passing through the investigated zone will not be com- 
pensated forby the heat flux arising due to thermal conductivity, but will be added to it, 
which would lead to an instantaneous decrease of the temperature to T +. At the same time, 
any temperature increase behind the front would rapidly lead to an increase of the tempera- 
ture within this zone. 

Thus, it is evident that for sufficiently large intensity of the wave in a medium with 
finite (small) thermal conductivity an isothermal region may exist within the wave where the 
gas behaves as an ideal medium with infinitely large effective thermal conductivity. In this 
medium the isothermal oscillations are undamped and the velocity of propagation of isothermal 
perturbations is smaller at the beginning of the isothermal zone than at the end. Due to the 
absence of dissipation in this zone, conditions for the buildup of the perturbations at the 
discontinuity appear. 

We shall restrict ourselves to the example cited above, since similar arguments can be 
presented in the case of any first-order dissipative system. 

Since isovelocity discontinuities (tangential, Alfv~n) cannot belong to a shock wave, 
the phase velocities of ideal systems corresponding to dissipative systems with nonzero 
viscosity coefficients must be special [12]. 

The authors express gratitude to G. Ya. Lyubarskii for the discussion of the problems 
tackled in this work. 
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RADIATION ORIGINATING BY THE IMPACT OF A GAS LAYER AGAINST AN 

OBSTACLE AT VERY HIGH VELOCITIES 

V. I. Bergel'son and I. V. Nemchinov UDC 533.6. 011 

For some time now, various devices that allow gases to be accelerated to very high veloc- 
ities have been constructed. As an example, we point out the erosion-type magnetoplasma com- 
pressors [i-5], in which maximum velocities (70-90 km/sec) with a quite high density of the 
gas jet are being successfully achieved. Deceleration occurs when this jet impacts against 
an obstacle and the kinetic energy of the gas is converted into internal energy. As the tem- 
perature of the heated gas becomes high, the emission of the plasma can be considerable. This 
effect has already been used in experiments [4, 5] in order to increase the energy conversion 
factor of an electric battery, feeding a plasmodynamic discharge, into radiation energy. It 
will be of theoretical interest to estimate the principle characteristics of the heated gas 
and the resulting radiation pulse for different jet parameters (velocity, density, and length) 
which could then be used to find their optimum values. 

The pattern of the motion and transfer of radiation in the case of an arbitrarily shaped 
obstacle and with an arbitrary distribution of the parameters in the jet can be extremely com- 
plex, and for its description the time-consuming solution of the two-dimensional nonsteady 
radiation-gasdynamic problem is necessary. However, in certain cases, this phenomenon can 
proceed under conditions which are quite close to one-dimensional plane geometry (for example, 
if the jet impacts on the plane base of an evacuated cylindrical "bucket," as if "cutting out" 
of it a uniform central part, which occurred in [4], and the times being considered are such 
that the resulting shock wave traverses a distance which is less than the diameter of the 
bucket). 

We shall carry out some estimates of the parameters of a plasma heated up by the impact 
against an obstacle. Suppose that the average velocity of the jet is ~50 km/sec and the 
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